AXISYMMETRIC MACRODISPERSION PROBLE MS
IN STRATIFIED POROUS MEDIA

A. A. Roshal!

The mass transfer of impurities in stratified porous media can be described by the diffusion
equation with a convective term. In this case the dispersion coefficient is proportional to
the square of the filtration velocity. In this paper we study the problem of the infusion of

a mixture into a stratum through a hole and the subsequent pumping of it out through the
hole, and we give the solution of the problem for various boundary conditions and their
asymptotic representations. From the results it is possible to construct a method of testing
using a single-hole method in order to determine the parameters of transport.

The mass transport of dynamically neutral impurities in stratified porous media when the mixtures
move in a direction parallel to the stratification is characterized by the phenomenon of longitudinal macro-
dispersion[1-3] In its asymptotic formulation the process is described by the diffusion equation with a
convective term. The total dispersion coefficient D*, taking molecular diffusion, convective diffusion, and
macrodispersion into account, then has the form

D* =D + hv + 82 (0.1)

Here D is the coefficient of molecular diffusion in free interstitial space, A is the convective diffusion pa-
rameter,8 is the macrodispersion parameter, and v is the filtration velocity, defined as the weighted mean
of the filtration velocities in each stratum or the total filtration rate of flow divided by the thickness of the
medium under consideration.

In essentially inhomogeneous media, when the filtration velocities are considerable, the first two
terms of (0.1) are small by comparison with the third term, i.e., the total dispersion coefficient in this case
is [2, 3]

D* = §v? (0.2)

1. Formulation of the Problem. We shall consider the motion of a mixture of relative excess concen-
tration C in an closed isotropic porous medium of many strata when there is either infusion or pumping out
through a hole of radius ry, assuming that the filtration flow is stationary and stabilized, and subject to the
linear Darcy law. Inthis case the axisymmetric macrodispersion equation has the form

ac QLo 1 9 ac L Q. \2
"5?;+m5;=7‘ar(pt*’a7)’ Dt*—ﬁ(——) (1.1)

2nmr

Here n, m are the weighted mean values of the active porosity and the thickness of the multistratum
medium; Q is'the flow rate of the filtration of the incoming or outgoing mixture through the hole; r is the
distance from the axis of the hole; t is the time. The subscript "+" refers to infusion of the mixture, and
the subscript " —" to pumping out. In Eq. (1.1) the mixture flow rate is positive for infusion and negative
for pumping out.

We introduce the generalized independent variables

e i

T=mn , Tp= (1.2)
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ThenEq. (1.1} can be written as

o ac 400 _ _m
T Gy e, =0 =gy (1.3)

Equation (1.3) is the one-dimensional diffusion equation with convective term in the region of the
variable x defined by (1.2). Hence, subject to the above assumptions, axisymmetric macrodispersion
problems canbe reduced to one-dimensional problems.

We consider the macrodispersion problem for pumping out through a hole at a flow rate of Q_ following
the previous infusion of a mixture during time ¢ - through the same hole at a rate Q .

In this case the boundary conditions have the form

ac
' fz

—0 (1.4)

x=p

C(z,0;7,)=D(az1,), C(eo,7;%)=0

The initial condition [the first boundary condition of (1.4)] is determined by the distribution of the
concentrations of the mixture at the end of its infusion through the hole. This distribution can be deter-
mined from the following considerations.

If the infusion is at constant concentration through the hole (boundary condition of the first kind), i.e.,

if
0(01'5-)) =1,C{z,0) :036(“’374-) =0 (1.5}
the initial condition is [4]
C(z,0;1,) = ﬁbl (a2, 1.y = O.S{erfc (%) - exp (a,z) erfe (%_:—_E*—” (1.8)

However, as shown in [5~7], a more correct boundary condition at the hole when there is infusion is
the boundary condition of the third kind

— p 2o 661

Q. or +C {To: t)=1 {1.?)

which in the generalized variables (1.2} is

1 oc
a, Oz

x=o+ €O, 7)= 1 (1.8)
In this case the initial condition can be written as [5, 7]

C(z, 0;7,) = @y (a,2, 7,) = 0.5 {erfc (-‘f;-”«}—;“:&)

T

{1.9)

T T, p .
— exp (a,z) erfe (ﬁz‘) +2V'7, exp(a,z)i erfo (ma;m ﬁ_:* }}

2. Solution of the Problem. We {ransform (1.3) for pumping out, taking account of the initial condi-
tion [the first boundary condition of (1.4)], by taking the Laplace transform with respect to the variable 7_:

S
%_f—a— %'—a—zq@(“-@r T*)'——aqu:O @.1)

Here

Wiz, g 7,)=L{C( 7;7}= qS e -C(x, v v,)du_
9

according to Carson and Heaviside.
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The general integral of (2.1) can be put in the form

W (2, ¢;v,)=Aexp[—~ (s Vag+ Yo)axl + Bexp[— (J,— Vg + Yya_z]

T e

0

— e[~ (5-) 7+ 3)a(z—0)]) (e, 8, 7.)d0 (2.2)

Using the boundary condition at the hole (1.4), we can write (2.2) as follows:
) = (TN L VIR r (ST
et )= 2o [~ (4 =/ 5 D] Y IRl (5 /475 2]
x

+;7~§~_~‘;—-17-;—:0§ fexp|— («é—\ +V 1+ 3o (z—0)

X

_ exp[‘—« (-7 qT—Z) a_(z—0)]} © (0,0, 7,)d0 2.3)

To determine the constant of integration in (2.3) we use the boundary condition at infinity (1.4). Then

B= ﬁ%ﬁ_ioexp [(g ]/;:1—) a.0)® (a9, 7,)do @.4)

0

From this,

Wz, ¢v)= —2—17%':1—7? {ioexi) [(%— e ]/E) a_(8— .z)] D (a9, 17,5(19

x

_.‘;ﬁy_i::%— e—a-% S exp [(’% — ]/q -+ -2-) z_ (6 — x)] ® (a8, 1,)d6

0

+ § exp [(—‘2— +1/ ;:,g) a_(8—2)]®(a,0,%,) do} (2.5)

0

For x=0, {2.5) has the form

WO, g v = 1/74.‘%1‘”73 exp [(_;. =V é:’_f_) a.8]® (a9, 7,)d0 (2.6)

The original of (2.6) is

€0, 757 = PO, ©) @08, %),
’ @1

. 1 0 =1l _gr 04T -
F\BLT—):V;T‘_GXP[“TJ‘ 0.5¢ erfc(zVT__), a=a,ja_

Similarly, we can construct the original of (2.5).

The function & (a §, 1) in (2.7) is defined by the initial conditions (1.8) or (1.9), depending on the
boundary conditions for infusion of the mixture through the hole.

3. The Asymptotic Representation of the Solution for a Boundary Condition of the First Kind. We
consider first the asymptotic representation of the solution for x=0. To this end we transform Eq. (2.6)
with initial condition (1.6) by taking the Laplace transform with respect to 7 ¢

Y0, ¢: p) = a_(r—VaFT)

; S 3.1
a_(p— Va0 +a.(—Vp+ia @-1)

952



The asymptotic representation of (3.1) and its original for large values of 7, have the forms

Ol =V T CO, 1 ;)= —®(r, /o 1) 3.2
Y(07 Qvlp)’“’a“(l/z_ Vq+1/4)-—a+p' ( 1 b +) Y 1V, ( . )
The asymptotic representations of (3.2) for large values of 7_and for 7_ >a@ 7, have the forms

) e e_qg Y
Y0, 0~ — ey €O n)=1-J/e ) (3.3)
respectively, and coincide with (3.2) with an error of not more than 5% if [3]
.>1. /e >04 3.4}
In (3.3)

J,p) =1—e*\ e Iy QY X5)ds (3.5)

i)

where J is the function introduced by Schumann {8}, and I, is the modified Bessel function of the second kind
and zero order.

Now we consider the asymptotic representation of (3.1) and its original for large values of r._:

Y{0,q p= 9 O, t) =D (A, T 3.8
( q p) a“q——a_,,(il-z—]/rp-ﬁi/’.;) ( - +} . 1(03__ -&} kY }

The asymptotic representation of (3.6) and its original for large values of 7, and 7, >ar_ are

A Y . ~
Y0,¢ 0= orniey 0% )=S0, (3.7)

respectively.
The expansion (3.7) coincides with (3.6) with an error of not more than 5% if [3]
T, >at. > 0.4 (3.8)
To estimate the applicability of the above asymptotic expansions (3.2) and {3.8}, we write the solution
{2.7) as

& b
C(0,7; 1) =\ F® v)do+\ F(6 )P (ah, 7,)db (3.9)
' b 8

defining the limits of integration # and v as the boundaries of the region of dispersion formed on infusion,
with an error of not more than 0.1% in (3.9):

B=al(r,— 5V v=0o1(r,+5V7,) (3.10)
In the region f= § = y the function &, (@ 6, 7.) varies in practice from 1{o 0. If we agsume that in
this region
Dy {0 8, 7,) =1 3.11
then
€O, ) <t—®u (7, +5V 7], 1) (3.12)

A comparison of (3.2) and (3.12) determines the error in using (3.2):

[®: (v, 45 Vi lad v) — Oz, /g, t)]
AL 1—Di(r,/a, 1) * (3.13)

Similarly, defining the limits of integration 8 andy in (3.9) as the boundaries of the region of disper-
sion for pumping out, we obtain the error in using (3.6) in the form

Di(ar_+5 Vi, 7.l .
IS R e (3.14)
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In addition, we can construct asymptotic representations of the
solution for large values of x. It can be shown that for large values
\ of 7, the asymptotic form of the solution, the representation of which
N is defined by (2.5), has the form
\\ Cx, v_; r)zi’—0.5{erfc(ﬁfﬂ:j]i“—)

T : ) 2V

1 exp (v, /@) erfe (&iﬂ%:_ﬂi» ‘ (3.15)

A ~
| et T
/———/?‘7
/]

where 7, »>a X and the asymptotic representation of the solution for
—— large values of 7_ is defined as follows:

W1/

K / Clz, v 7,)=Qu(a, [t ]a_—zl, 7)) (3.16)

The conditions for (3.15) and (3.16) to be used can be con-

Fig.
ig. 1 structed by analogy with the conditions (3.13) and (3.14).

4. Asymptotic Representations of the Solution for a Boundary Condition of the Third Kind. Asymptotic
expansions of the solution for x =0, with initial condition (1.9), can be obtained from the following considera-
tions. We consider the double Laplace transform of (2.7)

Y (0, g p) = ——=Cl=Va T Cla—Vp + 1)
©.a P Pla_Ch— Va+Y) +a,(a— Vp+1s)] (4.1)

For large values of T, (4.1) becomes

a_. (1/2‘— Vq+1/4) (4:.2)

Y (0, g; ~
©. & P) = = Ve 0 —axl

The inverse transformation of (4.2) with respect to p is

WO, g; 7)ot <2l VTR ey
1 4 EY Sand

i Y e\ (4.3)
Ve Vaitiata  ~ l/z—Vq+1/4+aexP[(2 V'Q"H‘)u]

This corresponds to the asymptotic form of the original:

€0, .5 1)) 4 — gy e forfe O V) + (@ Ha) exp [ (x + )] orfe (— o+ Hal V)
Lle—T @ T[0T
— 0.5erfe ( i 20;/{ ) ~ITE-1 exp (v, /a) erfc(——-———2 Ve )

+ exp[— T, +-a(a-t 1) 7_] erfc (E'——La';—l‘fzi_"'—uz"—) (4.4)

the asymptotic form of which for large 7, in turn, is
CO,v;1)=1—D0(r, ]/, 1) (4.5)

i.e., it coincides with the asymptotic representation (3.2) of the solution for a boundary condition of the
first kind.

' For large 7_ the asymptotic form of the representation (4.1) and its inverse transformation with re-
spectto g and the original, respectively, are

aqg(fp— Vot (4.6)
plag—a,(fa— Vp+ Yl

U0, p)z_k@exp[%_l/}@; af_J

C0, 1 1)=~0y(a1_; T,)

Y (0, q; p)=

As we know [7, 9],the asymptotic representation of (1.9) coincides with (1.6). Hence, the asymptotic
forms of the solutions (4.6) and (3.6) coincide for large T7_ and large T7,.
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The conditions for these asymptotic expansions and also the asyroptotic representations for anyxiobe
applicable can be constructed in the same way as was done in §3.

5. Analysis of the Results. A Numerical Example. The exact solution of the problem corresponding
to (2.5) is very complicated, but in particular conditions it is sufficient to use the asymptotic expansions.

Indeed, if infusion is at a rate much less than the pumping-out rate, the dispersion which arose in
infusion can be neglected, assuming that transport is determined for infusion only by the forced convection.
In this case, Ed. (18) has to be solved with the boundary conditions

i for v <7, /a,
C(w»o;tdr):{() for x>,£-:/a+
8¢
B fxmo =0
Coo, 1,1, =0,

(6.1)

The solution of the problem in this formulation can be deduced from the solution given in [5]. This
solution is very complicated. But, following [9], we can show that in particular conditions the sclution
virtually coincides with (3.2) and (3.15).

Similarly, in the case when the pumping-out flow rate is much less than the infusion flow rate we can
neglect dispersion arising during pumping out, assuming that its effect on the dispersion arising during
infusion is small. In this case, in Eq. (1.3) we omit the diffusion term,and its solution coincides with (3.6},
(3.16), and (4.6).

We now consider a numerical example. We put 7 +=0.4,a,=2,a_=1. Curves for the relative concen-
tration in the hole through which the mixture is pumped out are given in Fig. 1. Inthis case we assume that
a boundary condition of the first kind holds for infusion, i.e., we use the initial condition (1.8). Curve 1 gor-
responds to the exact solution of the problem (2.7), curve 2 to the asymptotic expansion (3.2}, curve 3 to the
asymptotic form (3.3), curve 4 to the asymptotic representation (3.6), and curve 5 to (3.7}.

From Fig. 1, in spite of the fact that the flow rate of pumping out is twice that of infusion, asymptot-
ic representation (3.2) quite accurately reflects the nature of the process for small values of the pumping
time,

The results obtained in this paper make it possible to lay the basis for the conduct of tests on water-
bearing tables in order to determine the parameters of transport by the single~-hole method. A similar
formulation of a field experiment is very urgent for the study of deep water~bearing tables.

As analysis of the asymptotic representations of the solutions shows, the simplest experiment is one
in which the infusion flow rate either is much greater or is much less than the pumping flow rate.

The author wishes to thank V. M. Shestakov for proposing the idea of the single-hole method and for
a number of valuable observations in the preparation of this paper.
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