
A X I S Y M M E T R I C  M A C R O D I S P E R S I O N  

IN S T R A T I F I E D  P O R O U S  M E D I A  

A.  A.  R o s h a l '  

P R O B L E M S  

The mass  t r a n s f e r  of impuri t ies  in stratif ied porous media can be descr ibed by the diffusion 
equation with a convective t e rm.  In this case the dispers ion coefficient is proport ional  to 
the square of the fil tration velocity. In this paper  we study the problem of the infusion of 
a mixture into a s t ra tum through a hole and the subsequent pumping of it out through the 
hole, and we give the solution of the problem for var ious  boundary conditions and thei r  
asymptot ic  representat ions .  F rom the resul ts  it is possible to construct  a method of test ing 
using a single-hole method in o rder  to determine the p a r a m e t e r s  of t ranspor t .  

The mass  t r anspor t  of dynamically neutral  impuri t ies  in strat if ied porous media when the mixtures 
move in a direction paral le l  to the stratif ication is charac te r ized  by the phenomenon of longitudinal mac ro -  
dispers ion [1-3] In its asymptot ic  formulation the p roce s s  is descr ibed by the diffusion equation with a 
convective t e rm.  The total d ispers ion coefficient D*, taking molecular  diffusion, convective diffusion, and 
macrod i spers ion  into account, then has the form 

D* ---- D -]- ~.v -]- 6v ~ (0.1) 

Here D is the coefficient of molecular  diffusion in free interst i t ial  space, 1 is the convective diffusion pa- 
rameter ,5  is the macrodispers ion  paramete r ,  and v is the filtration velocity, defined as the weighted mean 
of the fi l trat ion veloci t ies  in each s t ra tum or the total filtration rate of flow divided by the thickness of the 
medium under consideration.  

In essential ly inhomogeneous media, when the fil tration velocit ies are  considerable,  the f irst  two 
t e r m s  of (0.1) a re  smal l  by compar ison with the third  t e rm,  i.e., the total d ispers ion coefficient in this case 
is [2, 3] 

D* ~ 6v ~ (0.2) 

1. Formula t ion  of the Problem.  We shall consider  the motion of a mixture of relative excess concen- 
t ra t ion  C in an closed isotropic  porous medium of many s t ra ta  when there  is e i ther  infusion or  pumping out 
through a hole of radius r 0, assuming that the fi l tration flow is s tat ionary and stabilized, and subject to the 
l inear  Darcy  law. In this case the ax i symmetr ic  macrodispers ion  equation has the form 

oc Q+ OC i 0 D+*r D i * =  (1.1) 
n 0-~_+ -1- ~ ~- ---- r -~'r , \ 2-~-7~r ] 

Here n, m are  the weighted mean values of the active poros i ty  and the thickness of the mult is t ra tum 
medium; Q is the flow rate of the fi l tration of the incoming or  outgoing mixture through the hole; r is the 
distance f rom the axis of the hole; t is the t ime.  The subscript  "+" re fe r s  to infusion of the mixture, and 
the subscript  " - "  to pumping out. In Eq. (1.1) the mixture flow rate  is positive for infusion and negative 
for pumping out. 

We introduce the general ized independent var iables  

t+_ r' -- r0~ ~+ = (1.2) 
X----Yf- m~ , 6n 
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ThenEq.  (1.1) can be wri t ten  as 

0~ a ~ - -  a+ ~ = 0, a~: = ~ (1.3) 

Equation (1.3) is the one-dimensional  diffusion equation with convective t e r m  in the region of the 
var iable  x defined by (1.2). Hence, subject  to the above assumptions,  ax i symmet r i c  macrod i spe r s ion  
problems  eanbe  reduced to one-dimensional  problems.  

We consider  the macrod i spers ion  prob lem for  pumping out through a hole at a flow ra te  of Q_ following 
the previous  infusion of a mixture  during t ime  t+ through the same hole at a ra te  Q+. 

In this  case the boundary conditions have the fo rm 

ac I = o (1.4) C(z,O;,+)=a)(a+x,T~), C(oo, ,_; ,+) = 0, ~ : = 0  

The initial condition [the f i r s t  boundary condition of (1.4)] is de termined  by the distr ibution of the 
concentrat ions of the mixture  at the end of i ts infusion through the hole. This distr ibution can be d e t e r -  
mined f rom the following considerat ions .  

If the infusion is at constant concentrat ion through the hole (boundary condition of the f i r s t  kind), i .e . ,  
i f  

c (o, ~+) = 1, c (z, o) = o, c (oo, ~+) = o (1.5) 

the initial  condition is [4] 

C ( x ,  0; ~)  -- (1)l(a+x, "q) = 0.5 {erfc ( a : - ' ~ .  '~ a:-bv. ~ \ - ~ S )  + exp(a+x)erfc ( ~ - ~ .  j j  (1.6) 

However,  as shown in [5-7], a more  c o r r e c t  boundary condition at the hole when the re  is infusion is 
the boundary condition of the third kind 

2~rmro OC I 
- -  D+*-  Q+ 57 l ~ .  + C (r0, t .)  = i (1.7) 

which in the genera l ized  var iab les  (1.2) is 

oc + C(0, ~+) = l (1.8) 

In this  case the initial condition can be wri t ten  as [5, 7] 

C(X , 0; %+) =: (9~(a+x, ~.) = 0.5 (erfc ( a : - ~ .  
t ~ ;  ( t .9)  

:-'+'- o.o ' - exp (a:) erfc \ 7 ~ ] 

2. Solution of the Problem. We transform (1.3) for pumping out, taking accotmt of the initial condi- 
tion [the first boundary condition of (1.4)], by taking the Laplace transform with respect to the variable T_ : 

d~W . dW - -  a ~ qCP (a~x, ~ )  - -  a2_q W =- O (2.1) 
-dx~ t a ~ _ . 

W (x, q; %) = L {g (x, ~_; ~+} = q ~ e-qr (x, ~_; ":.)d* 
0 

Here 

according to Carson and Heaviside. 
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The general integral of (2.1) can be put in the form 

W (x, q; v+) = A exp [-- (V~ -i (q  -F ~/,) a x] + B exp [-- (V~ -- ]/-q~--Z[4)ax] 

l 

Using the boundary condition at the hole (1.4), we can wri te (2.2) as follows: 

W(x,q;,§189 -t--~>a_x] "'l,-,ls H- ~ V ~  exp L'F ~Y/t -b F q +  ~) a x]}_ 

F 1 ~-' + 

To determine the constant of integration in (2.3) we use the boundary condition at infinity (1.4). Then 

c o  

B---- 2F-q--~a-q ! exp [(~t V q-t-. ~--)a_0] (I)(a+0, ~+)d0 (2.4) 

From this, 

o o  , 

W (~, q; "~§ = 2 F ~ - q T ,  
;r 

11~ + V'#-+ 1/, 
I) 

H-i exp [( iH- Vfq -{--~Ia_(o-x)](I)(a+OJ:+)dS} 
0 

(2.5) 

For x=0, (2.5) has the form 

= a_q e x p - - - -  q -~)aO]Cl)(a.O,'~+)dO W(O,q;'~+) ~l~+ Fq+2/ ,  2 F H- (2.6) 

The original of (2.6) is 
o o  

C (0, ~ ;  ~+) = I P (o, ~_) �9 dO, 
0 

F ( 0 , ' ~ _ ) - - ~ e x P L - - T _  ]~--0"5e~erfo~21f~_)' a a+]a_ 

Similarly, we can construct the original of (2.5). 

The function �9 (a  0, ~-+) in (2.7) is defined by the initial conditions (1.6) or  (1.9), depending onthe 
boundary conditions for infusion of the mixture through the hole. 

3. The Asymptotic Representation of the Solution for a Boundary Condition of the First  Kind: We 
consider f irst  the asymptotic representation of the solution for x =0. To this end we transform Eq. (2.6) 
with initial condition (1.6) by taking the Laplace transform with respect to ~+: 

Y (0, q; p) = 

(2.7) 

a (1 I , - -  g q -l" ~t4) 
~_ (, /2- F ~  + a~ ('/2-- V P + 1),i 

(3.1) 
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The asympto t ic  r ep resen ta t ion  of (3.1) and i ts  originM for  l a rge  va lues  of  T+ have the f o r m s  

a - ( ' l ' - g q + ~ l ' )  , C(O, ~ ; % ) ~ t - - q h ( ' ~ §  Y (0,  q; p )  .,~ a (V~ - -  V ~  - -  a+p 

The asympto t i c  r ep re sen t a t i ons  of (3.2) for  l a rge  values  of r and for  r _  > ~ r+ 

a_q , C(O, �9 ; ~r+)~t - - . l ( ,+ / : r  T_) Y (0, q; p) ~ - -  a_q + a+p (q + t) . . . . .  

respec t ive ly ,  and coincide with (3.2) with an e r r o r  of not m o r e  than 5% if  [3] 

have the f o r m s  

I n  (3.3) 

(3.2) 

(3.3) 

~ ~> % la  > 0.t (3.4) 

] (~, z) = i - ,-* i ,-z So (2 l r ~  d~ (3.5) 
o 

where  J is the function introduced by Schumann [8], and I 0 is the modified Bes se l  hmction of the second kind 
and ze ro  order .  

Now we cons ider  the asympto t i c  r ep re sen ta t i on  of (3.1) and i ts  or ig inal  for  l a rge  va lues  of r_: 

Y(O, q; p) ~ a q C(O,x_; %)~-~ff)~(~ , %) (3.6) 
~ _ q  - ,~+ (~t= - Y p - - 4 ~ , )  ' 

(3.7) 

The asympto t i c  r ep r e s en t a t i on  of (3.6) and i ts  or iginal  fo r  l a rge  va lues  of r+ and r+ > a t _  a re  

a_q (p "I- t) C (0, ~; ~:,) ~ ] (o71"_, ~+) Y (0, q; p) ~ ~2q (p + i)+ ~+p ' 

r espec t ive ly .  

The  expansion (3.7) coincides with (3.6) with an e r r o r  of not more  than 5% i f  {3] 

�9 ~+ ~ , r L  > o.t  (3.s) 

To e s t ima te  the  appl icabi l i ty  of the above asympto t i c  expansions (3.2) and (3.6), we wr i t e  the solution 
(2.7) as 

~ i C (0, $ ;  ~+):.~. I F (0, ~ )  dO + F (0, "~) (It:t (aO, %) dO (3.9) 

defining the l i r ~ t s  of in tegrat ion /7 and T as the boundar ies  of the region of d i spe r s ion  fo rmed  on infusion,  
with an e r r o r  of not more  than 0.1% in (3.9): 

= ~-1 (,+ _ 51~+); r = ~-1 (,+ + 5 V~)  (3.10) 

In the region /7<_ 0 <_ 7 the function @1 (a 0, %) v a r i e s  in p r ac t i c e  f r o m  1 to 0. If we a s s u m e  that  in 
th is  region 

~Pl (a O, %) ~ I (3.11) 

c(o, ~_; ~ + ) < t  - ~([~+ § 5 V '~ t~  -~, ,_) 

A compar i son  of (3.2) and (3.12) d e t e r m i n e s  the e r r o r  in using (3.2): 

i - -  ~: (% 1 ~, 'r_) 

Similar ly ,  defining the l imi ts  of in tegra t ion 

(3.12) 

(3.13) 

/7 and T in (3.9) as the boundar ies  of the r eg ion  of d i s p e r -  
(3.6) in the fo rm 

�9 ~ (~ [-~_ + 5 V '~] ,  *+7 (3.14) 
@1 (~'e, %) 

then 

sion for pumping out, we obtain the error in using 
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- - . - . _ . _  

{ 

In addition, we can const ruct  asymptot ic  representa t ions  of the 
solution for large values of x. It can be shown that for  large values 
of ~+ the asymptot ic  form of the solution, the representa t ion  of which 
is defined by (2.5), has the fo rm 

4. 

C ( x ,  %'; 11+) ~t- --O,5{erf6f.a-[1/§ ) 
Jr-exP(~;+lc~)erf6( a-[~:+/a* -~- X] 4--~_)} 

" 2 V E  
(3.15) 

where  T+ >> a+x, and the asymptot ic  representa t ion  of the solution for  
large values  of T_ is defined as follows: 

C (x, ~_; %) ~ (I)1 (a+ [~_ / a_ -- x], ~+) (3.16) 

The conditions for  (3.15) and (3.16) to be used can be con- 
Fig. 1 s t ructed  by analogy with the conditions (3.13) and (3.14). 

Asymptot ic  Representa t ions  of the Solution for a Boundary Condition of the Thi rd  Kind. Asymptotic 
expansions of the solution for  x =0, with initial condition (1.9), can be obtained f rom the following cons idera-  
t ions.  We consider  the double Laplace t r a n s f o r m  of (2.7) 

Y (0, q; p) = a_ (~/~-- lfq + 1/,) (~/~ -- 1/p + '/4' 
pla_(ll~ - -  l f  q + %) 4- a+ (1/2 - -  1 / -p  4- %)1 (4.1) 

For l a rge  values  of ~+ (4.1) becomes  

a_ (I/2 - -  V q 4-1/~) 
Y (0, q; p) .~ (p + l)[a_ (1/~ _ 1 / - ~ )  _ a+p] (4.2) 

The i nve r se  t r ans format ion  of (4.2) with respec t  to p is 

( ' h -  g q - - 4 - ~ )  e - '+  - 
W ( O ,  q; i :+)~t  .~ l h -  V q + , / , + a  , 

This  cor responds  to the asymptot ic  fo rm of the original:  

C(0, v ; % ) ~ 1  t e - , + { e r f c ( l l s  ~ )  + ( a  q-l,Zs)exp[~(~ A- t)z l ,erfr [=+ l/sl V~-~-)) 
- 2(ce 4- i) 

�9 { % / ~ ' ' - )  ~ exp(,+/a)  e r f c ( ' + / a + ~ -  ) -- 0.Serfc \ 2 ]/-~-_ 2(a--t)  2 V C  

+ exp [ - -  z+ + cr (a + l) T_] erfr (~; /a  --2 [2at z~-+ t] ~.~) (4.4) 

the asymptot ic  fo rm of which for  large  T+, in turn,  is 

C (0, ~ ;  ~+) ~ 1 - 0 1  (~+ / ~, ~_) (4.5)  

i .e . ,  it coincides with the asymptot ic  representa t ion  (3.2) of the solution for  a boundary condition of the 
f i r s t  kind. 

F o r  large ~ - t h e  asymptot ic  fo rm of the representa t ion  (4.1) and its inverse  t ransformat ion  with r e -  
spect to q and the original,  respect ively ,  a re  

==. a_q (11~ - -  Y p § 1/~ 
Y (0, q; p)  p [a_q - a+ (~/~ - -  ] / ' ~ ) ]  

C (0, ~_; z§ ~ O~ (~v_; v+) 

(4.6) 

As we know [7, 9],the asymptot ic  represen ta t ion  of (1.9) coincides with (1.6). Hence, the asymptot ic  
fo rms  of the solutions (4.6) and (3.6) coincide for large T_ and large T+. 

954 



The conditions for these asymptotic expansions and also the asymptotic representations for anyxtobe 
applicable can be constructed in the same way as was done in w 3. 

5. Analysis of the Results. A Numerical Example. The exact solution of the problem corresponding 
to (2.5) is very complicated, but in particular conditions it is sufficient to use the asymptotic expansions. 

Indeed, if infusion is at a rate much less than the pumping-out rate, the dispersion which arose in 
infusion can be neglected, assuming that transport is determined for infusion only by the forced convection. 
In this case, Eq. (13) has to be solved with the boundary conditions 

0 l for z..%~./a.~ 
C (x, O, % ) =  for x >'~ § a+ 

~ I =o 
O~ x=t) 

C (r "v_, x+) = O, 

(5.1) 

The solut ion of the  p r o b l e m  in th is  formuIat ion  can be deduced f r o m  the solution given in [5]. Th is  
solution is v e r y  complicated.  But, following [9], we can show that  in p a r t i c u l a r  conditions the solution 
v i r tua l ly  coincides with (3.2) and (3.15). 

S imi lar ly ,  in the case  when the pumping-out flow ra te  is  much l e s s  than the infusion flow ra te  we can 
neglect  d i spe r s ion  a r i s ing  during pumping out, a s suming  that  its effect on the d i spers ion  a r i s ing  during 
infusion is smal l .  In th is  case ,  in Eq. (1.3) we omit  the diffusion t e r m , a n d  i ts  solution coincides with (3.6), 
(3.16), and (4.6). 

We now consider a numerical example. We put T+=0.4, a+=2, a_ =i. Curves for the relative concen- 
tration in the hole through which the mixture is pumped out are given in Fig. i. In this case we assume that 
a boundary condition of the first kind holds for infusion, i.e., we use the initial condition (1.6). Curve 1 cor- 
responds to the exact solution of the problem (2.7), curve 2 to the asymptotic expansion (3.2), curve 3 to the 
asymptotic form (3.3), curve 4 to the asymptotic representation (3.6), and curve 5 to (3.7). 

From Fig. i, in spite of the fact that the flow rate of pumping out is twice that of infusion, asymptot- 
ic representation (3.2) quite accurately reflects the nature of the process for small values of the pumping 
time. 

The results obtained in this paper make it possible to lay the basis for the conduct of tests on water- 
bearing tables in order to determine the parameters of transport by the single-hole method. A similar 
formula t ion  of a f ield exper iment  is  v e r y  urgent  for  the study of deep w a t e r - b e a r i n g  tab les .  

As ana lys i s  of the asympto t ic  r ep re sen t a t i ons  of the solutions shows, the s imples t  expe r imen t  is one 
in which the infusion flow ra te  e i ther  is much g r e a t e r  or  is  much less  than the pumping flow rate .  

The  author  wishes  to thank V. M. Shestakov for  p ropos ing  the idea of the s ingle-hole  method and fo r  
a n u m b e r  of valuable  observa t ions  in the p r epa ra t i on  of th is  paper .  
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